
ANNUAL JOURNAL OF ELECTRONICS, 2009, ISSN 1313-1842

208

A Deterministic Approach for Diagnosis Test
Generation - Further Optimizations

Pavlinka Goranova Radoyska

Abstract: In the paper “A Deterministic Approach for Diagnosis
Test Generation” was presented algorithm for diagnosis test pattern
generation with polynomial complexity and deterministic nature. In
those paper are given some optimizations and experimental results
for the subalgorithms 3, 4 and 5, presented in that paper as wall as
the method for control the distinguishability.

Keywords: algorithm, digital circuits, test pattern generation,
fault diagnosis, deterministic, z-set.

I. INTRODUCTION

The most of the circuit failure diagnostic methods are
simulation based. These methods can be classified in two
main classes: cause-effect [1], [2], [3], [4], [5] and effect-
cause [6], [7], [8]. Well build test patterns are significant
for methods efficiency. In the paper “A Deterministic
Approach for Diagnosis Test Generation” has proposed an
algorithm for diagnosis test pattern generation with
deterministic nature. This algorithm is based on single
stuck-at fault model. Its aims are to build the better
conditions for any of fault diagnosis methods. The
algorithm consists of three main steps: (1) build the
collection of all test patterns for every group of equivalent
faults; (2) minimize the number of test patterns by merging
the compatible test patterns; (3) minimize the number of
test patterns by extracting the redundant test patterns. They
are realized by five sub-algorithms.

The step (1) is performed by subalgorithm1 and
subalgorithm2. Subalgorithm1 describes the steps for
building the collections of input patterns v

lL , which can
force the line l to level v. Subalgorithm2 describes the steps
for building the collections of test patterns v

aT , which can

detect the fault af . The test patterns in v
lL and v

aT are in 3-
valent logic (‘0’, ‘1’ and ‘x’, which means “doesn’t
matter”). Test pattern reduction is made after any
calculation cycle and for every collection. The reduction is
made by absorbing. If one test pattern becomes covering for
the other, the first one can absorb the second and in the
collection rests only the first test pattern. Covering is
defined as follows: if there are two test patterns ti and tj and
if for any bit in ti and tj the next statements are true:
ti[b]=tj[b] or ti[b]=‘x’; then the ti becomes the covering test
pattern for tj and can absorb it.

Subalgorithm3 resolves the task for improving
distinguishability between faults with the same observation
point and compatible test patterns. The test patterns ti and tj

 P.Radoyska is with the College of Energetic and Electronics
at Technical University - Sofia, 31 Bulgaria blvd., 2140 Botevgrad,
Bulgaria, e-mail: pradoiska@abv.bg, GSM:+359 895 589 981

are compatible if for any corresponding bit in ti and tj, one
of the next statements is true: ti[b]=tj[b] or ti[b]=‘x’ or tj[b]
= ‘x’, where b is a bit index. The idea is to set one of ‘x’
values in one of compatible pairs in complementary level,
according corresponding bit in the other test pattern of the
pair.

The step (2) is performed by subalgorithm4. As the first
three subalgorithms decide the problem of finding all
possible test patterns for detecting every fault in the fault
dictionary and to guarantee distinguishability between them,
the next two subalgorithms decide the problem of
minimizing the final diagnosis test set Tres. In
subalgorithm4 the pairs of compatible test patterns are
replaced with common one. After this the total number of
unique test patterns is reduced without disturbing the
distinguishability.

The step (3) is performed by subalgorithm5. This
subalgorithm builds the minimal test pattern collection for
every fault, which guarantee distinguishability and make
the final diagnosis test set Tres by summarizing these
collections and extracting the duplicated test patterns.

The rest of the paper is organized as follows. In Section 2,
are given analysis, some experiment results and further
optimizations for algorithm 3. In Section 3, are given
analysis, some experiment results and further optimizations
for algorithm 4. In Section 4, are given analysis, some
experiment results and further optimizations for algorithm 5.
In Section 4, are given dictionary based method for fault
diagnosis. The experiments are performed on benchmark
circuits: c17, 74182, 74283 and 74L85.

II. SUBALGORITHM3 ANALYSIS, EXPERIMENTS
AND OPTIMIZATIONS

Subalgorithm2 builds the collection D of
triples >=< iiii FOtfd ,, , for every fault if , test patterns it ,
which detect this fault and corresponding fail output iFO . If
fault effect for one test pattern and one fault can be
observed on more then one output, for every output are
made different triple id .
Subalgorithm3. Improve distinguishability for the faults,
observing on the same output and having the compatible
test patterns. This algorithm follows the next steps:

1. For every primary output FOx make D collections
for every fault pairs af and bf

},,,,:{ xiaiiiiiia FOFOffFOtfdDdD ==>=<∈∀= and
},,,,:{ xibiiiiiib FOFOffFOtfdDdD ==>=<∈∀=

2. If in Da and Db there is at least one incompatible test
pattern, af and bf are distinguish, take the other pair.
Otherwise for the one of compatible pairs it ,

jt change one

ANNUAL JOURNAL OF ELECTRONICS, 2009

209

of ‘x’ levels to alternative value, so that it and
jt becomes

incompatible.
There are two points for investigation and optimization at

this algorithm: (1) test pattern election for compatible pairs
and (2) a bit with ‘x’ value for change election. For fault
election can be proposed three principles:

• pseudo-random (the first test pattern and the first fault
in compatible pair);

• the test pattern with maximum number of ‘x’ values
into two faults test pattern collections;

• the test pattern with minimum number of ‘x’ values
into two faults test pattern collections.

For ‘x’ value for change election can be proposed three
principles:

• Pseudo-random (the first ‘x’ with corresponding ‘0’
or ‘1’ level in the other test pattern in the pair).

• Reducing number of test patterns (the bit, which
makes the test pattern suitable for absorption).

• Expanding number of test patterns (the bit, which
makes the test pattern unique for the collection of test
patterns, detecting this fault).

Table 1. Experimental results for test pattern election

 c17 74182 74283 74L85
Number of Inputs 5 9 9 11
Number of Outputs 2 5 5 3
Fault Dictionary size 22 83 128 105
Number of fault pairs 240 1400 1600 4849
Number of potentially
undistinguished pairs 9 97 4 4
Undistinguished pairs
percentage 3.75% 6.93% 0.25% 0.08%
Number of diagnosis test patterns
 - pseudo-random 15 48 49 74
 - min 16 47 49 73
 - max 16 49 48 74

In the table 1 are shown experimental results after
applying the mentioned before three types of test pattern
election: pseudo-random, maximum number of ‘x’ values
and minimum number of ‘x’ values. The conclusion that
can be made upon this experiment is: the order of test
pattern election has not significant effect on the size of final
diagnosis test pattern collection. It is due to the quite low
percentage of the compatible pairs.

The experimental result on the methods for election the
bit with ‘x’ value, give the similar results, due to the same
considerations.

The effect of this algorithm is not so high but it is very
important to guarantee the faults distinguishability. To keep
low computation complexity, pseudo-random approach is
preferred.

III. SUBALGORITHM4 ANALYSIS, EXPERIMENTS
AND OPTIMIZATIONS

Subalgorithm 4. Test patterns for faults with different
observation points merging. This algorithm follows the next
steps:

1) For any primary output make the collection of
unique test patterns Tj that can detect any fault on this
observation point. If D collection for primary output a is

},,,:{ aiiiiiia FOFOFOtfdDdD =>=<∈∀= , then

}{ aia DtT ∈∀= , where numberoutputsa _1÷= .
2) Look for compatible test patterns ai Tt ∈ and

bj Tt ∈ and replace them with common test pattern tcom,
according to the next rules:

0 & х = 0
х & 0 = 0

1 & х = 1
х & 1 = 1

1 & 0 = ? (conflict)
0 & 1 = ? (conflict)

If in any bit in the common test pattern there is a conflict,
this pattern discards.

It is important how to choose the compatible patterns so
that the resulting number of unique test patterns becomes
minimal. Three different functions are written to optimize
this sub-algorithm. In the first function are juxtaposed the
collections with pseudo-random test pattern order (first
come, first compared). In the second function the
collections are ascending sort, based on filling (the number
of non-‘x’ levels). In the third function the collections are
also sorted, but the first collection is sorted in ascending
and the second- in descending manner.

Table 2. Experimental results for test pattern merging

 c17 74182 74283 74L85
Number of Inputs 5 9 9 11
Number of Outputs 2 5 5 3
Fault Dictionary size 22 83 128 105
Number of merged test patterns
- pseudo-random 149 1793 7261 68342
- ascending sort 149 1891 7261 72333
- ascending-descending sort 110 1469 7292 20806
Number of diagnosis test patterns
- without merging 15 48 49 74
- pseudo-random 13 44 36 63
- ascending sort 12 40 35 58
- ascending-descending sort 15 43 36 60

In the table 2 are shown experimental results after
applying the mentioned before three functions. Any of the
function reduces the size of diagnosis test pattern collection.
More over it reduce the number of unique >< ii FOt , pairs,
which reduce the operations in the subalgorithm5. The
number of operations during the juxtaposition is
proportional on n2, where n is the average number of unique
test patterns, which can detect any fault on given output.

From this table it can be seen that the test pattern
merging is important procedure for reducing the size of the
diagnosis test pattern collection. The best results are
received while the incoming tests pattern collections are
ascending sort. This is because the possibilities of merging
are highest.

ANNUAL JOURNAL OF ELECTRONICS, 2009

210

IV. SUBALGORITHM5 ANALYSIS, EXPERIMENTS
AND OPTIMIZATIONS

Subalgorithm5. Build the final test pattern collection Tres
by collecting the minimal diagnosis test patterns for every
fault. This algorithm follows the next steps:

1) For every Ffa ∈ make

},,,:{ aiiiiiia ffFOtfdDdD =>=<∈∀= .
2) For every unique >< ii FOt , pair in the aD make the

collections a
iF of detecting faults.

3) For every fault af make an intersection I a
iFK = ,

until in K remains only af . For every a
iF add it to the Tres.

4) Minimize the collection Tres by extracting the
duplicated test patterns.

The critical point of this algorithm is step 3) – the
intersection making. The cardinality of final test patterns,
that are possible to distinguish the fault af , is in strong
dependence of the a

iF collections order.
Let have the fault bf and four b

iF collections with the
same cardinality: },,{0 cba

b fffF = , },,{1 dba
b fffF = ,

},,{2 eba
b fffF = and },,{3 eca

b fffF = . The intersection
makes in three steps:

1) },{},,{},,{10 badbacba
bb ffffffffFFK === II

2) },{},,{},{2 baebaba
b fffffffFKK === II

3) }{},,{},{3 adcaba
b ffffffFKK === II

It is seen that step 2) don’t change the members and
cardinality of collection K. Hence it is unnecessary to add
test pattern for bF2 collection in the Tres.

Let have the fault af and three a
iF collections,

respectively: },{0 ba
a ffF = , },,{1 cba

a fffF = , },{2 ca
a ffF = .

If the intersection is made in the index order, in the process
of intersection must take part all a

iF collections:

},{},{},,{10 babacba
aa fffffffFFK === II ,

}{},{},{2 acacba
a fffffFKK === II .

Respectively in the Tres are added three test patterns. But if
we change the order and start from collection aF1 , only two
test patterns will be added to the Tres:

}{},{},{21 acaba
aa fffffFFK === II .

Hence it is suitable to order the a
iF collections in ascending

order in respect of their cardinality and after that make the
intersections.

This is the next question. If there is a test pattern
jt with

}{ a
a
j fF = , when the final test pattern set will be the

minimal: when includes the test patterns, such as
jt , which

detect only one fault, or when includes more test patterns
for every fault, which detect several faults.

In the table 3 are shown experimental results after
applying the mentioned before three functions. The best
results are registered after descending sort the collections
upon them size. For this approach if one test fails, it detects
a lot of faults, but if one test passes, it excludes of fault
candidate collection a lot of faults. This test pattern

collection is suitable for manufacturing testing, because of
it compactness and high detectable power.

Table 3. Experimental results for making the intersections

Number of diagnosis
test patterns c17 74182 74283 74L85

 - random 12 40 35 58
 - sort – descending 11 29 34 53
 - sort – ascending 12 35 37 53

V. MODULE FOR FAULT DIAGNOSIS

Test diagnosis dictionary },...,,{ 10 npppTDD = ,
where >=< outputfailpatterntestpi _,_ .

The module for fault diagnosis is written for controlling
the effectiveness of generated diagnosis test pattern. This
method is dictionary based and performs single stuck-at
fault diagnosis. Its aims are to control the prerequisites for
fault diagnostic in real processes. Diagnosis algorithm,
realized in this module includes the next steps:
1) Build the collection of failing test pairs

},...,,{ 10 npppFail = ,
 where >=< outputfailpatterntestpi _,_
2) Build the collection of pass test pairs

},...,,{ 10 mpppPass = (FailTDDPass −= , where TDD is
the full collection og diagnosis pair).
3) For every fault fi in fault dictionary do

a) flag_for_Adding=false, flag_for_Removing=false
b) for every test pair tpj that detects fi do

i) for every fail pair Failpi ∈ do
if tpj ≡ p => flag_for_Adding=true

ii) for every fail pair Passpi ∈ do
if tpj ≡ p => flag_for_Removing =true

c) if flag_for_Adding=true and
flag_for_Removing=false then add fi to Candidates.

At the and in the Candidates collection, for single stuck-
at fault solutions, there must be only one fault. This
algorithm is applicable for multiple fault solutions, but as a
result in the Candidates collection there will be more then
one candidate fault.

The experimental results show that the fault
distinguishability is good. For the used benchmark circuits
it varies between 95% and 100%. This means that the
algorithm for diagnosis test pattern generation is effective
and can improve fault diagnosis on manufacturing stage.

VI. CONCLUSION AND FUTURE WORK

The next conclusions can be made about the
subalgorithms after providing the optimizations and
experiments.

The effect of subalgorithm3 (improve distinguishability
between faults with the same observation point) on the size
of final test pattern collection is not high, but it is important
for improving distinguishability, checked in section 5. The
pseudo-random approach for pattern and ‘x’ position
electing is preferred.

ANNUAL JOURNAL OF ELECTRONICS, 2009

211

The test pattern merging, done in subalgorithm4, is
important procedure for reducing the size of the diagnosis
test pattern collection. The best results are received while
the incoming tests pattern collections are sort in ascending
direction.

For making the minimal diagnosis test pattern collection
for every fault, done in subalgorithm5, checking the
collection, which are sorted in descending direction on their
size, gave the best results.

The experimental results show that the fault
distinguishability of the algorithm is in an acceptable level
and make good circumstances for manufacturing tests and
fault diagnosis.

The main disadvantages of this algorithm are two: it is
memory huge and is single stuck-at fault oriented. The first
disadvantage can be resolve by storing the temporary
collections in the file or data base, which is in process. This
algorithm is a first step for the most general algorithm,
which aim is diagnosis test pattern generation for multiple
faults with masking effect.

Acknowledgements

This work was supported by the TU-Sofia, project

number № 091ni009-10.

REFERENCES

[1] Bernardi, P.; Grosso, M.; Rebaudengo, M.; Sonza Reorda, M.,
"A pattern ordering algorithm for reducing the size of fault
dictionaries," VLSI Test Symposium, 2006. Proceedings. 24th
IEEE , vol., no., pp.6 pp.-391, April 30 2006-May 4 2006
[2] Pomeranz, I.; Reddy, S.M., "A Same/Different Fault
Dictionary: An Extended Pass/Fail Fault Dictionary with
Improved Diagnostic Resolution," Design, Automation and Test in
Europe, 2008. DATE '08 , vol., no., pp.1474-1479, 10-14 March
2008
[3] Bartenstein, T.; Heaberlin, D.; Huisman, L.; Sliwinski, D.,
"Diagnosing combinational logic designs using the single location
at-a-time (SLAT) paradigm," Test Conference, 2001. Proceedings.
International , vol., no., pp.287-296, 2001
[4] Polian, I.; Miyase, K.; Nakamura, Y.; Kajihara, S.; Engelke, P.;
Becker, B.; Spinner, S.; Xiaoqing Wen; Diagnosis of Realistic
Defects Based on the X-Fault Model, Design and Diagnostics of
Electronic Circuits and Systems, 2008. DDECS 2008. 11th IEEE
Workshop on 16-18 April 2008 Page(s):1 - 4
[5] Takamatsu, Y.; Seiyama, T.; Takahashi, H.; Higami, Y.;
Yamazaki, K., "On the fault diagnosis in the presence of unknown
fault models using pass/fail information," Circuits and Systems,
2005. ISCAS 2005. IEEE International Symposium on , vol., no.,
pp. 2987-2990 Vol. 3, 23-26 May 2005
[6] Takahashi, H.; Boateng, K.O.; Saluja, K.K.; Takamatsu, Y.,
"On diagnosing multiple stuck-at faults using multiple and single
fault simulation in combinational circuits," Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on ,
vol.21, no.3, pp.362-368, Mar 2002
[7] Rousset, A.; Bosio, A.; Girard, P.; Landrault, C.;
Pravossoudovitch, S.; Virazel, A., "DERRIC: A Tool for Unified
Logic Diagnosis," European Test Symposium, 2007. ETS '07. 12th
IEEE , vol., no., pp.13-20, 20-24 May 2007
[8] Seshadri, B.; Yu, X.; Venkataraman, S.; Accelerating
diagnostic fault simulation using z-diagnosis and concurrent
equivalence identification, VLSI Test Symposium, 2006.

Proceedings. 24th IEEE, April 30 2006-May 4 2006 Page(s):6 pp.
- 385

8.2

